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Abstract— A structured light vision system using pattern
projection is useful for robust reconstruction of 3D objects. One
of the magjor tasksin using such a system isthe calibration of the
sensing system. This paper presents a new method by which a
2DOF structured light system can be automatically recalibrated,
if and when the relative pose between the camera and the
projector is changed. A distinct advantage of this method is that
neither an accurately designed calibration device nor the prior
knowledge of the motion of the camera or the sceneisrequired.
Several important cues for sef-recalibration, including
geometrical cue, illumination cue, and focus cue, are explored.
The sensitivity analysis shows that high accuracy in depth value
can be achieved with this calibration method. Some
experimental results are presented to demonstrate the
calibration technique.

Index Terms--Structured light system, active vision,
recalibration, pattern prqjection, 3D reconstruction.

. INTRODUCTION

EVERAL methods have been explored for recovering the

3D information of an object or a scene, including
stereovison, shape-from-motion, and active vision using
structured light. Among them, the active vision approach has
its advantages over others and has found successful
applications in different areas including robotics. In many
practical applications, the configuration of an active vision
system needs to be changed on-line to achieve satisfactory
measurements in which case it is desirable to be able to
recalibrate the vision system without having to use special
calibration apparatus as required by traditional calibration
methods.

Mogt existing methods for calibrating active systems are
based on static and manual calibration. During the calibration
and 3D reconstruction, the vision sensor is usually placed at a
fixed location. The calibration target (with specialy made
features, e.g. circles or squares) needs to be placed at several
accurately known or measured positions in front of the sensor
[1,2,3]. With a traditional method, the system must be
calibrated again if the vison sensor is moved or the relative
pose between the camera and the projector is changed.
Frequent recalibrations in using such a system are tedious
tasks.
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Self-calibration of vision sensorsis an attempt to overcome
the above problem and it has been actively researched in
recent years. However, most of the studies are concerned with
passive vision including stereovision. For example, using the
invariant properties of calibration matrix to motions, [4]
proposed an optimization procedure for recaibration of a
stereo vision sensor mounted on a robot arm. The technique
for sdf-recalibration of varying interna and external
parameters of a camera was explored in [5]. The issues in
dynamic camera calibration were addressed in [6] to deal
with unknown motions of the cameras and changes in focus.
A method for automatic calibration of cameras was explored
by tracking a set of world points [7]. Intensive efforts were
also made in calibrating hand-eye systems including the use
of sef-calibration techniques [8,9,10]. Such self-calibration
techniques normally require a sequence of images to be
captured via moving the camera or the target [11], although
with some special setup, two views can be sufficient for such
calibration [12]. These methods cannat be applied directly to
an active vison system which includes an illumination
system using structured light in addition to the traditional
Vision sensor.

As for the calibration of active vision systems, most of the
methods are based on datic calibration and manual
operations [13]. Similar to the calibration of passive stereo
vison systems, attempts were made in calibrating a structured
light system via transformation from 3D world coordinates to
camera image plane coordinates using perspective
transformation matrices [1,3]. To avoid using external
calibrating devices and manual operations in the calibration,
a self-reference method [14] was proposed. A set of points
was projected to the scene and was detected by the camera to
be used as reference in the calibration. With a cubic frame,
Chu et al. proposed a calibration free approach for recovering
unified world coordinates [15]. Fofi et al. discussed the
problem in sef-calibrating a structured light sensor [16]. A
dratified reconstruction method based on Euclidean
constraints by projection of a specia light pattern was given.
However, the work was based on the assumption that
"projecting a square onto a planar surface, the more generic
quadrilateral formed onto the surface is a parallelogram”.
This assumption is questionable. Consider an inclined plane
placed in front of the camera or projector. Projecting a square
on it forms an irregular quadrangle instead of parallelogram



as the two line segments will have different lengths on the
image plane due to their different distances to the sensor.
Jokinen's method [17] of self-calibration of light stripe
systems is based on multiple views. The object needs to be
moved by steps and several maps are required for the
calibration. The regigration and calibration parameters are
obtained by matching the 3D maps via least errors. The
limitation of this method is that it requires a special device to
hold and move the object. A desktop approach to 3D shape
reconstruction was proposed by Bouguet and Perona based on
“weak gructured lighting” [18]. This method provides an
inexpensve solution to the problem, but the accuracy
achievable in practical implementation islimited.

In this paper, we present our work in automatic calibration
of our active vision system via a single view without using
any special calibration device or target. Our interest falls in
"self-calibration” and "sdf-recalibration" of active vision
systems [19]. Here self-recalibration deals with situations
where the system has been initially calibrated but needs to be
calibrated again due to changed relative pose (the orientation
and position) between the camera and projector. Self-
calibration refers to cases where the system has never been
calibrated and none of the sensor's parameters are known.
Although the method described in this paper is mainly
concerned with the former situation, it can also be applied to
the latter case. In our work, some important cues are explored
for the recalibration including the geometrical cue, focus cue,
and illumination cue. The first two are used for the sdf-
recalibration of a 2DOF system in the reported experiments.
The illumination cue is not presented in detail here, but it is
useful for improving accuracy or for systems with more
degrees of freedom.

Il. SELF-RECALIBRATION TASK

The active vision system here consists of an LCD projector
to cast a pattern of light onto the object and a camera to sense
the light pattern as shown in Fig. 1. If abeam of light is cast,
and viewed obliquely, the distortions in the beam line can be
translated into height variations. To make the vision system
adaptable to different objects/scenes to be sensed, we
incorporated two degrees of freedom of relative motion in the
system design, i.e. the orientation of the projector (or camera)
and its horizontal displacement. The x-z plane is
perpendicular to the plane of the projected laser stripe. The 3-
D coordinate system is chosen based on the camera (or
projector) center and its optic axis.

At the static calibration stage, the camera and the projector
are calibrated to obtain the focal lengths (v, v, ) and the
optical centers ( Xco, Yeo, Xpo ). ONCe the perspective projection
matrix of the camera and the equations of the planes
containing the sheets of light relative to a global coordinate
frame are given from the calibration, the triangulation for
computing the 3D coordinates of object points simply

Fig. 1 Schematics of the 2DOF active vision system

involves finding the intersection of a ray from the camera and
aplane from the projector.

The recalibration task is to determine the relative pose
between the camera and the projector so that the 3D depth
value can be computed by the triangulation principle. Now we
firstly describe the 3D reconstruction in a general form.

For the camera, the relationship between the 3D
coordinates of an object point based on the view of the camera

Xe=[Xe Yo Zg 1" and its projection on the image
X, =[Mx. Ay, A]" isgiven by

Xe = P.X¢, D)

Ve K %o O
Po=10 vy Yo O . 2
0O 0 1 0

Similarly, the projector is regarded as a pseudo-camera in
that it casts an image rather than detects it. The relationship
between the 3D coordinates of the object point from the view

of the projector X,=[X, Y, Z, 3" and its back

projection on the projector x, =[x, K]" is
Xp = P,X,, ©)

where P, isa 2x4 perspective matrix:
v, 0 x2 0
Py :{ p p } ) )
2x4

The relationship between the camera view and the
projector view is given by



Xp=MXc, M =RgR,R ;T (5)

where Re, Rq, Rg, and T are 4x4 matrices standing for the
3-axisrotations and a translation.
Substituting (5) into (3) gives

X, =P,MX,. (6)
Let H=P,M :{rl} : ™
r.2 2x4

where r; and r, are 4-dimensional row vectors. Equation (6)

may be written as {pr} — {rlxc} from which we can derive
K r,X.

(X2 =) X, =0. ()

Combining (1) and (8), we have

ok =%, ©
X,lp =Ty 0
or QX =Xgy (10)
where | Fe x_=|*c|Qisa4 by 4 matrix.
X Jf,=r | ¢ |0

Then the world 3-dimensional position of a point on the
object surface can be determined by

Xe=Q X, - (11)

From the above equations, the 3D object can be uniquely
reconstructed if we know the matrix Q that contains 13
parameters from the two perspective matrices P, and P, and
one coordinate transformation matrix M. As the two
perspective matrices can be determined a the datic
calibration stage, the dynamic recalibration task is to
determine the relative M between the camera and the
projector. There are 6 unknown parametersin (5), i.e.

u=[@ a B X, Yy Zol. (12)

Since the system considered in this paper has two degrees of
freedom, only two of the six parameters are variable and the
other four are constants which can be known from the static
calibration. If the x-z plane is not perpendicular to the plane
of the projected laser sheet, its angle @ can also be identified
at this stage. As the angle & =(90° -®) is small and the
image can be rectified by rotating the corresponding angle
accordingly during the recalibration, we can assume that & =

Surface reflection

[Xe Ye Zd], [Xp Yo Z]

. . illumination
optical axis
[ : 4 Ze on projector
vl
on camera;
vc% b
R -_'-_---,-.>
,*! optical center Xe
g SN

0. The displacement in y-direction between the camera center
and the projector center, Yo, and the rotation angle 5, are also
small in practice. They do not affect the 3D reconstruction as
the projected illumination consists only of vertical line stripes
here. Therefore, we may assumethat Yo = 0 and 4 = 0. Thus,
the unknown parameters are reduced to only two (ap and b)
for the dynamic recalibration. Here h is a constant and a, and
b have variable values depending on the system configuration.

Fig. 2 Triangulation in the 2DOF system

For such a 2DOF system, the triangulation (9) for
determining the 3D position of a point on the object surfaceis
then simplified as (see Fig. 2)

b-hcot(a)

ez = e

[ Xc Ye Vi, (13

where Vv, is the distance between the camera sensor and the
optical center of the lens, a = a(i) = ap + 0p(i) is the
projection angle, and

a,(i) = tan‘l(xp—(')) : (14)
Vp
wherei isthe stripe index and (i) is the stripe coordinate on
the projection plane: xy(i) =i x stripe width + x,(0).
If the projector’s rotational center isnot at its optical center,
h and b shall be replaced by:

h' =h-r,sin(a,) and b =b-r, cos(a,)
where rg is the distance between the rotational center and the
optical center as illustrated in Fig. 3. Here, h and ro can be
determined during the static calibration.



Fig. 3 The case
when the
rotational
center isnot at
the optical
center.

Since conventional self-calibration methods need several
views to be acquired from different positions, they are
inconvenient for the automated recalibration task here. Using
a single view, it is in general difficult to determine all the
unknown parameters in the calibration. Fortunately for the
system here with 2DOF, self-recalibration can be achieved by
utilizing the intrinsic cues. The use of geometrical cue and
focus cue for determining the unknowns ap and b will be
shown in the following sections.

I1l. GEOMETRICAL CUE

The geometrical cue describes the intrinsic relationship
between the stripe locations on the camera and the projector.
The geometrical constraint can be used to determine the
unknown parameters of the vision system.

A. Geometrical constraint

Assume a straight line in the scene which is expressed in
the camera coordinate system and projected on the X-Z plane:

Z.=C X+ Cy. (15)

The geometrical constraint between the projection and
imaging of the scene line is obtained by substituting (13) into
(15):

[b-hcot(a)] (Ve- C1X:) - C2 [ v, cot(a) +x.] = 0. (16)

The parameters v, h, and v, are constants that have been
determined at the static calibration stage. X, = X = X(i) and
ap = dp(i) are known coordinates on the sensors. Therefore,
o, b, Cy, and C, are the only four unknown constants and
their relationship can be defined by three points.

Denote Ag=tan(ap) and Ai=tan(ay,). The projection angle of
an illumination stripeis

1-AA _ Vo ~AoXp
cot(a, +a,) = = ,

( 0 p|) AO+A VpA0+Xp
where X, = X,(i) is the stripe location on the projector’'s LCD
and vj, is the distance between the LCD and the optical center.
The x-coordinate value of the i stripe, Xo(i), can be
determined by (14). The sripe coordinate X, and the

projection angle ay,; areillustrated in Fig. 2.

(17)

Equation (16) can be written as,

(bAy = C, —h)vevp, + (hCy = bC A = CoA)Vp X +
(b+AC, + hAO)VcXp -(C, +bC; + hCl/-\O)xcxp:O (18)

or X, =W, +Wox, +Wa( XX, ) (19)
WhereW1 VTV, Vs W, -V, W, -V2 and
vV, v, v, v,
V, =bA,-C, -h, (20a)
V, =b+AC, +hA,, (20b)
V, =hC, —bC,A, - C, A, (20c)
V, =C, +bC, +hC,A, - (20d)

Equation (19) is the reationship between the stripe
locations on the camera and the projector and is termed the
geometrical constraint here.

B. Rectification of stripe locations

Within aview of the camera, there can be tens or hundreds
of stripes from the scene. The stripes’ coordinates (X, Xp) on
the image and the projector should satisfy (19) in theory. In
practice, however, the coordinates (x;) obtained from the
image processing may not satisfy this constraint, due to the
existence of noise. To reduce the effect of noise and improve
the calibration accuracy, the stripe locations on the image can
be rectified by using a curve fitting method.

Let the projection error be

Qarr (Wi, Wy, W) = >"[x, (i) =% ()]
i=1

m
= Z[\Nl +W2Xp +W3(chp) - Xc]2
i=1

(21)

Then W;, W, and W; can be obtained by minimizing the
projection error Qg With respect to W :

aQG’I’

=0,(k=12 3).
E

(22)

Using (21) in (22) gives

m %0 D x)x%0) |
" i;\l i;\l \Nl
> %, () D) D X)) | W
mi:1 mi:1 i;\l _VV3
D% () D xX50) DX ()x3 ()
Li=1 i=1 i=1 B



m m m T

= D% X% X x,0)x0) | (29)
i=1 i=1 i=1

or GW = X, W = G™X. (24)

The dripe location in the camera coordinate is thus
rectified as

x = WXy (25)
1-W;x,
C. Solution using the geometrical cue
Equation (18) can be written as
VeVpVy +VpX Vo +VeXoVg = XXV, = 0. (26)

For an illumination pattern with n (n = 3) stripes on the
image plane, Equation (26) can be expressed as

Ve VeA VpXi —AX [V
VpVe VoA VpXo —AX |V, _0. @7

e en V3

Ve VoA VX, —AXL (Vs
or ALV =0, (28)

where A is an nx4 matrix, X; = x{i) , A = %,(i), and V is a
4x1 vector. The following theorem is used for solving (27):

Theorem 1 (the rank of the matrix A). Rank (A ) = 3.
Its proof isgiven in Appendix A.

Equation (27) has a solution in the form of

V=k[vivovsvs]" kOR, (29)

There exists an uncertain parameter k as the rank of matrix
A is lower than its order by one. Using Singular Value
Decomposition to solve the matrix equation (27) to find the
least eigenvalue, we can obtain the optimal solution in the
least square sense.

In a practical system setup, the z-axis displacement h is
adjusted to O during a datic calibration, and (29) gives a
solution for the relative orientation: Ag = va/v, and op = tan™
(Ag). By setting b = 1 and solving (20) and (29), the 3D
recongtruction can be performed to obtain an object shape
(with relative size). If we need to obtain the absolute 3D
geometry of the object, equation (29) is insufficient for
determining the five unknowns, b, C;, C;, Ay, and k. To
determine all these parameters, at least one more constraint

equation is needed. The focus cue or the best-focused distance
is used herefor this purpose.

IV. FocusCue

The focus cue is based on the fact that for a lens with a
specified focal length the illumination pattern will be blurred
on object surface unless it is projected on the best-focused
distance. This gives another intrinsic constraint for the vision
system in the self-recalibration.

A. Focus cue formulation

Fig. 4 shows the profile of a projection using synthetic
illumination data. Fig. 4ais atypical illumination pattern on
the LCD to be projected and its intengity profile is illustrated
in Fig. 4b. Consider the straight line (15) in the scene (Fig.
4c). When the illumination pattern casts on such a line, the
intensity distribution is nonlinear and is given by

(7 +V,)° (30)

|i(x|): lo’

\%
(249, )+ (%, + 2%, )

T Y T . . :
when (_E<_Xp -2nT <E),nD N. T isthe stripe width
z

of the source pattern.

a)

0) d)

b)

a) A pattern of the projector’s source illumination

b) The intensity distribution along a horizontal profile
) A planein the scene

d) Theintensity profile on the surface (without blurring)
Fig. 4 Projection of illumination on the scene

Fig. 4d illustrates the curve (30) without considering the
effect of blurring. However, the illumination is usually
blurred unless it is projected on a plane at a specia distance
2y = Vfp/(vp-fp). For al other locations in the scene, the



displacement will be

Vofo
AZZ|Z‘20|:|Z‘V |- (31)

P~ 'p

The corresponding blur radiusis proportional to Az:

v, — f
o=-—"_Ppz, (32)
VpFnum
where Fm = T, /1 is the f-number of the lens setting.

B. Determination of blur diameters

Theblurring in the illumination is not evenly distributed in
the blur circle. It can be described by a point spread function
due to diffraction effects of light wave. A Gaussian model can
be used to describe the blurring effect. For one dimensional
case, the spread function is (Fig. 5a)

XZ

g 207

(33)

1
9s(X) = oo

The brightness of the scene illuminated by the projector is
the convolution of the blur model with the ideal illumination
intensity (30) (Fig.5h):

100 =11 () 0 g, (6) =11 (U)g, (4 ~u)du.  (34)

C) d)
a) Gaussian point spread function
b) Blur intensity distribution
¢) The areafor determining the blur diameter
d) Determination of the best-focused location
Fig. 5 Determination of blur diameters

The Fourier transform of (34) is

(@) = 1 ()G (@), (35)
where G, (w) is the Fourier transform of the Gaussian
function

2
X o?a’

- _
e 200 Mgy =e 2

G, (@) =[" Ji (36)

2o
I i(x,) can be approximated by averaging the intensity on a
light stripe to simplify the Fourier transform, Ii(x,) = I_(x,) .

If a coordinate system with its origina at the center of the
bright stripe is used, this value can be written as

T(x) = E[e(x%) —e(x—%)] , 37)

where g(.) isaunit step function.

The Fourier transform of (37) is

I (@) = 1T sz =178 (38)

Since 1(x) (the curve on the shaded area in Fig.5c) is
measured by the camera, its Fourier transform | (w) can be

calculated. Rewriting (35) and integrating on both sides of it
gives

0'(,()

je 2 dw= IOTI F(w) (39)
Sa(f)

Sincetheleft sideisfound to be

"y () ow, 2w
N2 j 2 d( ) */_, (40)

o

The blur radius can be computed by

OT.[ F dw

Sa(f)

Neglecting the effect of blurring caused by multiple
illumination stripes, we have the following theorem to
determine the blur radius with alower computational cost.



Theorem 2. When projecting a source illumination with a
step profile, the blur radius is proportional to the area under
the blurring curve:

Vorr

og=——-5S,
I0
where |y is the intensity without considering the blurring and
Sis the area as illustrated in Fig.5¢c. The proof is given in
Appendix B.

(42)

C. The best-focused location

With Theorem 2, by integrating the blur curve on each
stripe edge, its blur radius can be calculated and a set of data
are obtained. Since the blur diameters are unsigned, in order
to obtain a straight line corresponding to the changing depth
in the scene, we need to find the minimum value in the data
set and separate the set into two parts. Their linear best-fits
give two straight lines (Fig. 5d):

0, (x) =k x+k, and g, (X) =ksx+Kk,. (43)

Finding the intersection of the left line and the right line
gives

k4 - k2
= , a4
best kl —_ k3 ( )
which corresponds to Az =0 or Vo fo .On the image,

zZ=
v — f,
(X, e s Yorey ) 1S the best-focused location.

D. Combination of the two cues
For the projector, the length of the light path is

? = (x=b)*+y* + (z+h)?
_ [bv, + hx]* +[bsin(@) - hcos(@)]*y.”

: > . (45)
[V, cos(a) + % sin(a)]
At the best focused location, we have
Vofp
= ey COS(O — ) - (46)
Vo~ fp
or [ Vofy 2=
(v, - f,)cos(a -a,)
[b, +hx.]* +[bsin(a) - hcos(@)*y¢ | 47)

[ve cos(a) + X, sin(a)]®

Equation (47) is a constraint equation derived from the
focus cue. Here h, v, and f, are known constants and b has
appeared in the geometrical constraint. X, Y., and a are

replaced by the Xcpes, Yepes: Obes determined in the above
formulation. Thus together with the four equations in (29),
there are 5 unknown parameters S = (k,b,C;,C,,a;) that can

be found by solving the 5 equations. Using steepest descent
approach which is an iterative method based on local
gradients, we can obtain an accurate solution of the non-
linear equation system. The agorithm for the self-
recalibration is summarized as follows:

(1) Proect the illumination patterns on the scene and
capture the images from the camera. Find a line that is
illuminated by at least three stripes.

(2) Compute the stripe locations in the image by a gradient
operator and record their coordinates (X, Y, i) with i being
the stripe index.

(3) Cdculate the geometrical cue V (29) based on the
matrix equation (27).

(4) Determine the blur diameter for each stripe. Use linear
fitting method to find the best-focused location (44).

(5) Combine the two cues, (29) and (47), to find the
relative parameters.

(6) Obtain the matrices H (7) and Q (11) for performing
3D reconstruction.

V. SENSITIVITY ANALYSIS

A. Recalibration Error

In this section, the sensitivity of the depth error to the
recalibrated parameters (i.e. Aoy and Ab) is analyzed. The
relative reconstruction error of the scene depth is

E.=—=="2=="
.z bz da, Z

- Ab + (hxc +ch)ZAa'O
b-hcot(a) v, [b- hcot(a)]? sin®(a) '

(48)

Now we consider the computational error of the stripe
location on the captured image which can cause errors in the
recalibrated parameters. We have

bv, —hcot(a)v,

C, = 49
Cx +C, v, 0ol(@) + X, (49)
_ . 22-C,  Cbv.-Z%+C,Z, .,
=- Ax.. (50
o [(h+z)vc+ w(h+2)? Jsin“(a)Ax;.  (50)

Taking the derivative of (47) with respect to b and x; gives
(bv,, + hx.)(v.Ab+ hAx,) +[bsin(a) — hcos(a)] yc2 sin(a)Ab

v, f . .
= (—22)?[v, cos(@) + X, sin(@)] sin(a@)Ax,
Vo~ fp



(%)2[% cos(@) + %, sin(a)] sin(a) - bhv, —h?x

Ab=—P P
(bve +hx, )V +[bsin(a) ~hcos(a)]ye sin(@)

In the image processing, the stripe location error in the
image can be given as

9
V12’

Ax, = (51)

where o is the pixel width of the sensor. For a common CCD
camera, o is usually between 5um and 20um.

Consider a camera with a focal length v. = 30mm and a
sensor’s pixel width & = 11.6um. If the projector is 0.5m
away from the camera, it’s orientation angleis45°, h=0or h
<< b, and the object is at 1m distance from the camera, the
relative orientation error is.

_ in2
AV _ [1_é+ AN +ZOZ(Z vc)] sin (a)i (52)
a z Z vaa W12
= 0.00547%.
Therelative position error is.
A_b _ (Vp fp)2 VC5 (53)
b vZsec’(a) +yZ bZ(v, - f,)*V12
= 0.0112%
Therelative depth error is:
Ab . (hx, +bv.)ZAay (54)

E = 2an2
b—-hcot(a) v, [b-hcot(a)]“sin“(a)
= 0.0284%.

By utilizing a large number of dripes in an image and
employing a sub-pixel method in the image processing, the
accuracy can be improved significantly. However, there exists
noise resulting from the projector emission, surface reflection,
and sensor perception. Static calibration errors are also
passed on to the dynamic recalibration. These require a
separate treatment in the analysis.

B. Error Propagations

The error propagation from initial static calibration to
dynamic recalibration is analyzed in two steps. First, the
static calibration error itself will cause depth error in the
reconstruction. Second, the static calibration error can pass
on to the dynamic recdibration and then to depth
recongtruction. The static calibration is usually performed by
placing a printed target in front of the sensor. The error
resulting from this calibration stage will lead to 3D

reconstruction errors directly and indirectly.
1) Errorsdirectly caused by initial static calibration
The 3-D reconstruction error directly caused by initial
satic calibration error can be estimated by computing the
partial derivative of (49). For example, assume that the
camerafocal length v, has an amount of uncertainty Av.. This
will giveriseto arelative z-depth error

=22 op
e

Ve

E —_
btan(a) —h" v,

To prevent the static calibration error (E,. = Av, / V) from
being magnified or accumulated in the reconstruction, we
need |- % |c1.ie 0<Z<2btan(a) - 2h.

btan(a) - h

Ignoring the effect of small h and considering a case with
45° projection angle, we only need to ensure Z < 2b. Hence
to achieve satisfactory 3D reconstruction results, the object
should be placed not farther than twice of the baseline
distance. The influences of the uncertainties on the other
parameters obtained from the initial calibration can be
analyzed in a similar way and the resulting errors are found
to be in the same order as the uncertainties.

2) Error propagation from static to dynamic calibration

The satic calibration error will also cause dynamic
calibration error, which in turn will cause 3D reconstruction
error.

Among the initially calibrated system parameters (ve, Vp,
Xco, @nd Xq0), We observed that the noise in v, and X, has no
influence on the results of ap and b. Hence, from the matrix
equation (27), we only need to analyze the error propagation
due to the noise in v, and Xxy,. However, the theoretical
analysis is intractable here. In this research, we
experimentally proved that the relative errors of both the
recalibration parameters (Ao, and Ab) ae linear
combinations of Avyp/v,and Axp/Xg. Consider the above case
with a similar assumption for the system configuration as in
1), we generated perfect data for the matrix A in (28), and
fictitiously added the perturbations (Av, and Axg) to it. The
dynamic parameters (ao and b) were then computed. The two
error surfaces against the perturbations in vp and Xp, were
numerically found to be in the form

Av AX
AD 1 1909°YP - 01056 2P0 .
b Vp XpO
A Av AX
2% _ 06058 —"> - 0.1286 —"° .
0’0 Vp XpO

The above dynamic calibration errorsthen will cause errors
in the 3D recongtruction. The relative errors so caused can be
determined quantitatively by (48).

In summary, the reconstruction errors can be traced to
three sources: 1) directly from the datic calibration; 2)



directly from the dynamic calibration; 3) indirectly from the
static to dynamic calibration and to the final reconstruction.
As the initial static calibration error will cause both direct
and indirect reconstruction errors, special care needs to be
exercised at this stage. In practice, however, the satic
calibration is normally performed off-line (before installed on
the robot). Therefore, the parameters can be calibrated with a
relatively high accuracy (usualy between 0.001%-0.1%)
[1,17,20]. This makes it possible to achieve high
reconstruction accuracy with the dynamic recalibration
approach. In our investigation, we found that an overall
relative 3D reconstruction accuracy of about 0.03% is
achievable (i.e. about 0.3mm error for an object at 1m from
the camera).

VI. EXPERIMENTAL STUDY

The experimental setup is shown in Fig. 6. It consists of an
LCD projector from ABW GmbH Ltd Co. and a PULNIX
TMC-9700 camera with a CCD of 740 x 480 pixels and a
25mm lens. The projector is fixed whereas the camera can be
moved vertically and rotated about the y-axis. The light stripe

index isidentified by a gray-encoded stripe projection method.

Fig. 6 The system setup

At the static calibration stage, the intrinsic parameters of
the camera and the projector were obtained. Then at the
dynamic recalibration stage, the illumination was projected
onto a white background without predefined features. The
cameras orientation and horizontal position were adjusted so
that the camera could detect the illuminated area.

C) d)
a) The stripe illumination projected
b) An intensity profile on the image
c) Itsderivative profile
d) Thelocations of stripe edges
Fig. 7 Determination of stripe locations

Fig.7aillustrates an image captured when the illumination
was projected on the background wall. Fig. 7b shows an
intensity profile and Fig. 7c shows its derivative profile. The
stripe locations were determined by finding the peaks (Fig. 7d)
of the derivative curve. Table 1 lists the results computed
from the image, of the rectified stripe locations by (25), and
blur radiuses by (42).

Table1 Stripelocations and blur radiuses

= |2g2 2R | £8| £| 3°
2 |=8] |XEF 3 = | =3
T| 8glage 2 g =1
+ = 8 S2Zq Q 8; c
& 2 =7 g <} = o
2 B = 8
1 | 15.6402 41048 | -4.1160 | 394.136
2 | 429004 | 27.260 | -3.7886 | -3.7921 | 341.153
3 | 707796 | 27.879 | -3.4652 | -3.4705 | 339.794
4 | 979553 | 27.175 | -3.1499 | -3.1512 | 314.350
5 | 124.980 | 27.024 | -2.8364 | -2.8342 | 266.668
6 | 152.085 | 27.105 | -25220 | -2.5194 | 241.496
7 | 178884 | 26.799 | -2.2111 | -2.2068 | 196.548
8 | 205751 | 26.866 | -1.8995 | -1.8965 | 207.838
9 | 231.917 | 26.165 | -1.5960 | -1.5883 | 153.154
10 | 258.089 | 26.172 | -1.2924 | -1.2823 | 148.398
11 | 284.109 | 26.020 | -0.9905 | -0.9784 | 115.748
12 | 310.702 | 26.593 | -0.6820 | -0.6766 | 156.415
13 | 336.678 | 25.975 | -0.3807 | -0.3769 | 171.202
14 | 362.160 | 25.481 | -0.0851 | -0.0793 | 227.485
15 | 387.994 | 25.834 | 0.2145 | 0.2163 | 240.614
16 | 413648 | 25.653 | 05121 | 0.5099 | 291.551
17 | 438915 | 25.267 | 0.8052 | 0.8015 | 363.936
18 | 464.515 | 25.600 | 1.1022 | 1.0910 | 490.529
19 | 489.102 | 24.586 | 1.3874 | 1.3787 | 526.596
20 | 513.822 | 24.719 | 1.6741 | 1.6643 | 570.515
21 | 538.055 | 24.234 | 1.9552 | 1.9481 | 578.125
22 | 562455 | 24.309 | 2.2383 | 2.2299 | 614.716




Using (27), the solution of the geometrical cue was found
to be

K(V1, Va, Vs, Va)=(-0.0973, 2.8569, -1.3123, 1.0).

For each dripe, the blur radius was determined by (42).
The linear regression of these data gave two straight lines

(Fig. 8)

R; () = -1.0107 x + 400.1845
R, (X) = 1.6425x - 348.1617

The location of the minimum blur radius was determined
by finding the intersection of the two lines xos = 282.0507.

Fig. 8 Determination of the best focused location

The best-focused location on the camera coordinate system
was thus

Xe, best =(Xco—X0s) S =(369.5-282.05) x0.0116 =1.0144.

Yorbes = (Yoo - Yoo) S, = (240-231) x0.0136 = 0.1224
. _ (11-10)(2820507 - 258.089)
p-best 284.109- 258.089
Xppest = (1 ppest 1 po)Weripe =(10.921-21)x0.44=-4.4522

+10=10.9209

Vv
Oy ) = —P— = I215 _ 504878

obes | — 44522

The two parameters for the relative pose were obtained by
combining (29) and (47)

ap = -37.3084°, and b = 588.9788mm.

On average, the above dynamic recalibration takes about
0.6 second in our implementation on a Pentium 111-800 PC.
The method is quite stable, with the steepest descent
algorithm normally converging after no more than 10
iterations. Finally the relative matrices in (5), (7), and (10)
were

10

07954 0 -06061 -4684647
o 1 0 0
M =R,T = :
-0.6061 0 07954 -356.9830
o 0 0 1
96.947 0 -23.272 -57100
H=PM = :
06061 0 0.7954 -356.98
30089 0 0 96.947x,-0.6061
| 0 31415 0 0
Q= 3605 2305 1 - 23.272x, - 0.7954
0 0 0 -57100x, +356.98

The 3-D coordinates of a point on the object surface were
recovered by

X =Q Xy, for x, O [-N, NJ.

With the above calibration results, an example for 3D
object reconstruction was conducted. The reconstructed 3D
surface of the object (a computer mouse) is shown in Fig. 9.

To test the dynamic performance of the method, we
conducted another experiment using a precisely machined
metal workpiece (shown in Fig. 10) as the object to be
reconstructed. The workpiece was placed in front of thevision
sensor at a distance of Z=388.5mm from the lens. We then
arbitrarily changed the camera pose severa times. The depth
and width (D and L in Fig. 10) of the object were then
measured following the dynamic recalibrations. Some typical
results are listed in Table 2. At Pose 0, the results contain the
reconstruction errors caused by the static calibration error
only. Pose 1 and Pose 2 are two arhitrary sensor
configurations. Our experiments showed that the 3D
measurement errors using the dynamic calibration were about
1.5-3.0 times of those using static calibration only. In our
multi-view dynamic experiments, no accumulative effect of
the static calibration errors was observed. This is because the
dynamic calibration isonly relative to the initial pose (Pose 0).
With our initial calibration technique currently implemented,
we can achieve a dynamic accuracy of 0.015-0.3% in the
scene depth measurements.

Such an achievable accuracy is considered quite
satisfactory, since we did not make special attempts in
improving the static calibration accuracy. The success in the
dynamic recalibration and reconstruction can be attributed to
the specialized device (the projector) adopted and the
recalibration method developed in our work. This can be
compared with the case when using a desktop system as in
[18]. Although their application is for static only, the
achievable accuracy is limited compared with our static
calibration (in Pose 0). This is due to the errors that might be
introduced in calibrating their table, light source, as well as
the camera and in localizing the shadow edge of the stick.



Thisis the cost paid for the inexpensive hardware setup. An
LCD projector is not a too expensive device. The benefit
gained in employing such a specialized system will well
justify its use in many applications where a stable accuracy is
needed in the measurement and in particular when dynamic
recalibration is desired.

Table 2 Experimenta resultsin dynamic measurements

Pose | Feature | True | Measured | Relative |Relativeerror
value value error  |to scene depth
VO (mm)| v(mm) | (Av/V) (AVIZ)

0 D 35 35.1623 | 0.00464 | 4.178x10™
0 L 55 55.2851 | 0.00518 | 7.388x10*
1 D 35 35.2588 | 0.00739 | 6.662x10™
1 L 55 55.4975 | 0.00905 0.001281
2 D 35 35.2756 | 0.00787 | 7.0940x10™
2 L 55 55.4231 | 0.00769 0.001089

Fig. 9 The 3D object
reconstructed

Fig. 10 Theworkpiece
for dynamic test

VIlI. CONCLUSION

This paper presents our work in developing an active
vision system which can be self-calibrated automatically. A
recalibration method is developed that can be used in a
dynamic application. The recaibration method does not
require a special calibration target with pre-defined patterns
or known motions of the sensor or the object. Whilst most
previous self-calibration methods require multiple views at
different positions, our method only needs to take a single
view.

The intrinsic cues of the system have been explored for the
self-recalibration. By taking advantage of the active sensing
system, the geometrical cue and the focus cue have been
successfully used in the calibration of the structured light
vision system with 2DOF relative motion between the sensor
and the illumination. The sensitivity analysis shows that with
this method, a high accuracy in the depth measurement is
achievable. This can be further improved if a good sub-pixel
method and multi-stripe optimization techniques are
employed.

Experiments were performed to apply the developed
calibration method to a real vision system. The results show
that using the dynamic recalibration, stable and accurate 3D
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reconstruction can be achieved. The illumination cue was not
presented in this paper in treating the 2DOF system in use.
Current work is going on in extending the method to the self-
recalibration of a vision system with more motion degrees of
freedom of motion and testing the dynamic performance
using a robot work cell. Applications of the method will
include advanced robotic applications where automated
operations entail dynamically re-configurable sensng and
automatic recalibration to be performed on-line without
operator’sinterference.

APPENDIX A

Proof of Theorem 1. Rank (A ) = 3.
Considering the 3x3 matrix A in the |eft-top corner of the
nx4 matrix A. If det(A) # 0, then rank(A) = 3istrue

VpVe VeAL VpXy

A =|VpVe VA VX, (A1)
VpVe VeAg VX3 >3

With row operations, it can be transformed to

Ay= VpVe Ve A Vp Xy . (A2)
0 Vc(AZ - Al) Vpxz _Vpxl
0 0 vXG-X) V(X —xl)ﬁz::‘l

From (19) and (20), we have

- (VoVs -ViV, ) = chp(1+ pbz )C,(Cb+C, +h) . (A3)

U,

V42 (Cz + bCl + hClp\) )2

Suppose that the observed line does not pass through the
optical center of either the camera or the projector, i.e.

C,#0,and Cb+C,+h=h-Z(0,b) 0. (Ad)

Hence U,#0. (A5)

For any pair of different light stripes illuminated by the
projector, i.e. Aj # Ay, from (19),

U, (A6)

X. :U1+71
U, +v, A

we have X; £ X; , and

Ay'(LD) =vev, 20,
Ar'(22) =V (A-A)#0,

(A7)
(A8)



A=A
A=A
= VUVi(A-A)A-A)

(Us + VA )(Ug +Vp A )(Us +V, A )

A "(33) =V, (X3 = X1) =Vp (X5 = Xy)

0- (A9)

Hence, rank(A) = rank(A ;) =rank(A,') =3.

On the other hand, rewrite matrix A using four column
vectors, i.e.

A=[Cm Cm Cm Cml, (A10)
where
e AVARRVAVARVATA (A11)
S (S I (A12)
Cog =[Vp Xy VpX, VXl (A13)
G =[- XA = Xohy o = XAl (A14)
With the fourth column,
Cna ={=XiA} :{—M U,A + 3x }
VP P
H VeV +TVe A +T3Vp X}
=1,Cy, t7,C,, +T5C5 (A15)

This means that the matrix’s 4" column, ¢, has a linear
relationship with the first three columns, ¢y - Cnz . SO the
maximum rank of matrix A is3,i.e. rank(A) <3.

Therefore we can conclude that

rank(A) = 3. (A16)
APPENDIX B
Proof of Theorem 2. The blur radius is proportional to the
area under the blurring curve: o = @ S.

0
Consider the illumination whose intensity profile is a step
g, Xx<0
0, 20
illuminated scene is the convolution of Gaussian function and
the source pattern:

function 1,(x) = { The brightness on the

_(x—u)2
I(x):jj:lo(u)g(x—u)du ZIO.[_OOO e 20° du (A17)
=’ e o o) = 57 ey o

The size of the blurred area is the integration of the
intensity profile function from 0 to +co:

12

S= jo”" I(x)dx = — jo“"’ ji e dydx (A19)
J~+ooJ~ 20y —>< d)d J‘ \/_oyeydy

=TT vy (oy?) = 12 A20
T [ e d-y?) Tor (A20)

That gives o= @ S

0
(A21)
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