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Abstract— A structured light vision system using pattern 
projection is useful for robust reconstruction of 3D objects. One 
of the major tasks in using such a system is the calibration of the 
sensing system. This paper presents a new method by which a 
2DOF structured light system can be automatically recalibrated, 
if and when the relative pose between the camera and the 
projector is changed. A distinct advantage of this method is that 
neither an accurately designed calibration device nor the prior 
knowledge of the motion of the camera or the scene is required. 
Several important cues for self-recalibration, including 
geometrical cue, illumination cue, and focus cue, are explored. 
The sensitivity analysis shows that high accuracy in depth value 
can be achieved with this calibration method. Some 
experimental results are presented to demonstrate the 
calibration technique. 
 

Index Terms--Structured light system, active vision, 
recalibration, pattern projection, 3D reconstruction. 
 

I. INTRODUCTION 

EVERAL methods have been explored for recovering the 
3D information of an object or a scene, including 

stereovision, shape-from-motion, and active vision using 
structured light. Among them, the active vision approach has 
its advantages over others and has found successful 
applications in different areas including robotics. In many 
practical applications, the configuration of an active vision 
system needs to be changed on-line to achieve satisfactory 
measurements in which case it is desirable to be able to 
recalibrate the vision system without having to use special 
calibration apparatus as required by traditional calibration 
methods.  
    Most existing methods for calibrating active systems are 
based on static and manual calibration. During the calibration 
and 3D reconstruction, the vision sensor is usually placed at a 
fixed location. The calibration target (with specially made 
features, e.g. circles or squares) needs to be placed at several 
accurately known or measured positions in front of the sensor 
[1,2,3]. With a traditional method, the system must be 
calibrated again if the vision sensor is moved or the relative 
pose between the camera and the projector is changed. 
Frequent recalibrations in using such a system are tedious 
tasks.  
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Self-calibration of vision sensors is an attempt to overcome 
the above problem and it has been actively researched in 
recent years. However, most of the studies are concerned with 
passive vision including stereovision. For example, using the 
invariant properties of calibration matrix to motions, [4] 
proposed an optimization procedure for recalibration of a 
stereo vision sensor mounted on a robot arm. The technique 
for self-recalibration of varying internal and external 
parameters of a camera was explored in [5]. The issues in 
dynamic camera calibration were addressed in [6] to deal 
with unknown motions of the cameras and changes in focus. 
A method for automatic calibration of cameras was explored 
by tracking a set of world points [7]. Intensive efforts were 
also made in calibrating hand-eye systems including the use 
of self-calibration techniques [8,9,10]. Such self-calibration 
techniques normally require a sequence of images to be 
captured via moving the camera or the target [11], although 
with some special setup, two views can be sufficient for such 
calibration [12]. These methods cannot be applied directly to 
an active vision system which includes an illumination 
system using structured light in addition to the traditional 
vision sensor.  

As for the calibration of active vision systems, most of the 
methods are based on static calibration and manual 
operations [13]. Similar to the calibration of passive stereo 
vision systems, attempts were made in calibrating a structured 
light system via transformation from 3D world coordinates to 
camera image plane coordinates using perspective 
transformation matrices [1,3]. To avoid using external 
calibrating devices and manual operations in the calibration, 
a self-reference method [14] was proposed. A set of points 
was projected to the scene and was detected by the camera to 
be used as reference in the calibration. With a cubic frame, 
Chu et al. proposed a calibration free approach for recovering 
unified world coordinates [15]. Fofi et al. discussed the 
problem in self-calibrating a structured light sensor [16]. A 
stratified reconstruction method based on Euclidean 
constraints by projection of a special light pattern was given. 
However, the work was based on the assumption that 
"projecting a square onto a planar surface, the more generic 
quadrilateral formed onto the surface is a parallelogram". 
This assumption is questionable. Consider an inclined plane 
placed in front of the camera or projector. Projecting a square 
on it forms an irregular quadrangle instead of parallelogram 
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as the two line segments will have different lengths on the 
image plane due to their different distances to the sensor. 
Jokinen's method [17] of self-calibration of light stripe 
systems is based on multiple views. The object needs to be 
moved by steps and several maps are required for the 
calibration. The registration and calibration parameters are 
obtained by matching the 3D maps via least errors. The 
limitation of this method is that it requires a special device to 
hold and move the object. A desktop approach to 3D shape 
reconstruction was proposed by Bouguet and Perona based on 
“weak structured lighting” [18]. This method provides an 
inexpensive solution to the problem, but the accuracy 
achievable in practical implementation is limited.   

In this paper, we present our work in automatic calibration 
of our active vision system via a single view without using 
any special calibration device or target. Our interest falls in 
"self-calibration" and "self-recalibration" of active vision 
systems [19]. Here self-recalibration deals with situations 
where the system has been initially calibrated but needs to be 
calibrated again due to changed relative pose (the orientation 
and position) between the camera and projector. Self-
calibration refers to cases where the system has never been 
calibrated and none of the sensor's parameters are known. 
Although the method described in this paper is mainly 
concerned with the former situation, it can also be applied to 
the latter case. In our work, some important cues are explored 
for the recalibration including the geometrical cue, focus cue, 
and illumination cue. The first two are used for the self-
recalibration of a 2DOF system in the reported experiments. 
The illumination cue is not presented in detail here, but it is 
useful for improving accuracy or for systems with more 
degrees of freedom.  

 

II. SELF-RECALIBRATION TASK 

The active vision system here consists of an LCD projector 
to cast a pattern of light onto the object and a camera to sense 
the light pattern as shown in Fig. 1. If a beam of light is cast, 
and viewed obliquely, the distortions in the beam line can be 
translated into height variations. To make the vision system 
adaptable to different objects/scenes to be sensed, we 
incorporated two degrees of freedom of relative motion in the 
system design, i.e. the orientation of the projector (or camera) 
and its horizontal displacement. The x-z plane is 
perpendicular to the plane of the projected laser stripe. The 3-
D coordinate system is chosen based on the camera (or 
projector) center and its optic axis.  
    At the static calibration stage, the camera and the projector 
are calibrated to obtain the focal lengths (vc, vp ) and the 
optical centers ( xc0, yc0, xp0 ). Once the perspective projection 
matrix of the camera and the equations of the planes 
containing the sheets of light relative to a global coordinate 
frame are given from the calibration, the triangulation for 
computing the 3D coordinates of object points simply 

involves finding the intersection of a ray from the camera and 
a plane from the projector.  
    The recalibration task is to determine the relative pose 
between the camera and the projector so that the 3D depth 
value can be computed by the triangulation principle. Now we 
firstly describe the 3D reconstruction in a general form. 
    For the camera, the relationship between the 3D 
coordinates of an object point based on the view of the camera 

T]1[ cccc ZYX=X  and its projection on the image 
T][ λλλ ccc yx=x  is given by 

 
    ccc XPx = ,                                    (1) 

 
where Pc is a 3×4 perspective matrix of the camera: 
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Similarly, the projector is regarded as a pseudo-camera in 

that it casts an image rather than detects it. The relationship 
between the 3D coordinates of the object point from the view 

of the projector T]1[ pppp ZYX=X  and its back 

projection on the projector T][ κκ pp x=x  is 

 

ppp XPx = ,                                     (3) 

 
where Pp is a 2×4 perspective matrix: 
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The relationship between the camera view and the 

projector view is given by 
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Fig. 1 Schematics of the 2DOF active vision system  
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cp MXX = , TRRRM βαθ=               (5) 

 
where Rθ, Rα, Rβ, and T are 4×4 matrices standing for the 

3-axis rotations and a translation. 
Substituting (5) into (3) gives 
 

cpp MXPx = .  (6) 
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where r1 and r2 are 4-dimensional row vectors. Equation (6) 

may be written as 
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Combining (1) and (8), we have 
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Then the world 3-dimensional position of a point on the 

object surface can be determined by 
 

+
−= cc xQX 1 .                                            (11) 

 
From the above equations, the 3D object can be uniquely 

reconstructed if we know the matrix Q that contains 13 
parameters from the two perspective matrices Pc and Pp and 
one coordinate transformation matrix M. As the two 
perspective matrices can be determined at the static 
calibration stage, the dynamic recalibration task is to 
determine the relative M between the camera and the 
projector. There are 6 unknown parameters in (5), i.e. 

 
][ 000 ZYXβαθ=u .                (12) 

 
Since the system considered in this paper has two degrees of 
freedom, only two of the six parameters are variable and the 
other four are constants which can be known from the static 
calibration. If the x-z plane is not perpendicular to the plane 
of the projected laser sheet, its angle Φ can also be identified 
at this stage. As the angle θ0 =(90o -Φ) is small and the 
image can be rectified by rotating the corresponding angle 
accordingly during the recalibration, we can assume that θ0 = 

0. The displacement in y-direction between the camera center 
and the projector center, Y0, and the rotation angle β0 are also 
small in practice. They do not affect the 3D reconstruction as 
the projected illumination consists only of vertical line stripes 
here. Therefore, we may assume that Y0 = 0 and β0 = 0. Thus, 
the unknown parameters are reduced to only two (α0 and b) 
for the dynamic recalibration. Here h is a constant and α0 and 
b have variable values depending on the system configuration.  
 

               Fig. 2 Triangulation in the 2DOF system 
 
For such a 2DOF system, the triangulation (9) for 

determining the 3D position of a point on the object surface is 
then simplified as (see Fig. 2) 
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where vc is the distance between the camera sensor and the 
optical center of the lens, α = α(i) = α0 + αp(i) is the 
projection angle, and 
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where i is the stripe index and xp(i) is the stripe coordinate on 
the projection plane: xp(i) = i × stripe width + xp(0). 

If the projector’s rotational center is not at its optical center, 
h and b shall be replaced by: 

 

)sin( 00
' αrhh −=  and )cos( 00

' αrbb −= , 

where r0 is the distance between the rotational center and the 
optical center as illustrated in Fig. 3. Here, h and r0 can be 
determined during the static calibration.  
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Since conventional self-calibration methods need several 
views to be acquired from different positions, they are 
inconvenient for the automated recalibration task here. Using 
a single view, it is in general difficult to determine all the 
unknown parameters in the calibration. Fortunately for the 
system here with 2DOF, self-recalibration can be achieved by 
utilizing the intrinsic cues. The use of geometrical cue and 
focus cue for determining the unknowns α0 and b will be 
shown in the following sections. 

III. GEOMETRICAL CUE 

The geometrical cue describes the intrinsic relationship 
between the stripe locations on the camera and the projector. 
The geometrical constraint can be used to determine the 
unknown parameters of the vision system. 

A. Geometrical constraint 

Assume a straight line in the scene which is expressed in 
the camera coordinate system and projected on the X-Z plane: 

 
Zc = C1 Xc + C2 .  (15) 
 
The geometrical constraint between the projection and 

imaging of the scene line is obtained by substituting (13) into 
(15): 

 
    [ )cot(αhb − ] (vc - C1 xc ) - C2 [ cc xv +)cot(α ] = 0.  (16) 

 
The parameters vc, h, and vp are constants that have been 

determined at the static calibration stage. xc = xci = xc(i) and 
αpi = αp(i) are known coordinates on the sensors. Therefore, 
α0, b, C1, and C2 are the only four unknown constants and 
their relationship can be defined by three points.  

Denote A0=tan(α0) and Ai=tan(αpi). The projection angle of 
an illumination stripe is 
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where xp = xp(i) is the stripe location on the projector’s LCD 
and vp is the distance between the LCD and the optical center. 
The x-coordinate value of the ith stripe, xp(i), can be 
determined by (14). The stripe coordinate xp and the 
projection angle αpi are illustrated in Fig. 2. 

 

Equation (16) can be written as, 
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0202 hACAbV ++= ,  (20b) 

020113 ACAbChCV −−= ,  (20c) 

01124 AhCbCCV ++=  .  (20d) 

 
Equation (19) is the relationship between the stripe 

locations on the camera and the projector and is termed the 
geometrical constraint here. 

B. Rectification of stripe locations 

Within a view of the camera, there can be tens or hundreds 
of stripes from the scene. The stripes’ coordinates (xc, xp) on 
the image and the projector should satisfy (19) in theory. In 
practice, however, the coordinates (xc) obtained from the 
image processing may not satisfy this constraint, due to the 
existence of noise. To reduce the effect of noise and improve 
the calibration accuracy, the stripe locations on the image can 
be rectified by using a curve fitting method. 

Let the projection error be 
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Then W1, W2, and W3 can be obtained by minimizing the 

projection error Qerr with respect to Wk : 
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Using (21) in (22) gives 
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or GW = X, W = G-1X.  (24) 

 
The stripe location in the camera coordinate is thus 

rectified as 
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C. Solution using the geometrical cue 

Equation (18) can be written as 
 

04321 =−++ VxxVxvVxvVvv cppccppc .  (26) 

 
For an illumination pattern with n (n ≥ 3) stripes on the 

image plane, Equation (26) can be expressed as 
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or 0=⋅ VA ,  (28) 

 
where A is an n×4 matrix, Xi = xc(i) , Ai = xp(i), and V is a 
4×1 vector. The following theorem is used for solving (27): 

 
Theorem 1 (the rank of the matrix A). Rank ( A ) = 3. 
Its proof is given in Appendix A. 
 
Equation (27) has a solution in the form of 
 
V = k [ v1 v2 v3 v4 ]

T , k ∈  R ,  (29) 
 
There exists an uncertain parameter k as the rank of matrix 

A is lower than its order by one. Using Singular Value 
Decomposition to solve the matrix equation (27) to find the 
least eigenvalue, we can obtain the optimal solution in the 
least square sense. 

In a practical system setup, the z-axis displacement h is 
adjusted to 0 during a static calibration, and (29) gives a 
solution for the relative orientation: A0 = v3/v4 and α0 = tan-1 
(A0). By setting b = 1 and solving (20) and (29), the 3D 
reconstruction can be performed to obtain an object shape 
(with relative size). If we need to obtain the absolute 3D 
geometry of the object, equation (29) is insufficient for 
determining the five unknowns, b, C1, C2, A0, and k. To 
determine all these parameters, at least one more constraint 

equation is needed. The focus cue or the best-focused distance 
is used here for this purpose. 

IV. FOCUS CUE 

The focus cue is based on the fact that for a lens with a 
specified focal length the illumination pattern will be blurred 
on object surface unless it is projected on the best-focused 
distance. This gives another intrinsic constraint for the vision 
system in the self-recalibration. 

A. Focus cue formulation 

Fig. 4 shows the profile of a projection using synthetic 
illumination data. Fig. 4a is a typical illumination pattern on 
the LCD to be projected and its intensity profile is illustrated 
in Fig. 4b. Consider the straight line (15) in the scene (Fig. 
4c). When the illumination pattern casts on such a line, the 
intensity distribution is nonlinear and is given by 
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                    a)                                       b) 

 
                    c)                                       d) 
 
a) A pattern of the projector’s source illumination 
b) The intensity distribution along a horizontal profile 
c) A plane in the scene 
d) The intensity profile on the surface (without blurring) 
Fig. 4  Projection of illumination on the scene 
 
Fig. 4d illustrates the curve (30) without considering the 

effect of blurring. However, the illumination is usually 
blurred unless it is projected on a plane at a special distance 
z0 = vpfp/(vp-fp). For all other locations in the scene, the 
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displacement will be  
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The corresponding blur radius is proportional to ∆z: 
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where rfF pnum /= is the f-number of the lens setting. 

B. Determination of blur diameters 

The blurring in the illumination is not evenly distributed in 
the blur circle. It can be described by a point spread function 
due to diffraction effects of light wave. A Gaussian model can 
be used to describe the blurring effect. For one dimensional 
case, the spread function is (Fig. 5a) 
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The brightness of the scene illuminated by the projector is 

the convolution of the blur model with the ideal illumination 
intensity (30) (Fig.5b): 
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                    a)                                       b) 

 
                    c)                                       d) 
a) Gaussian point spread function 
b) Blur intensity distribution 
c) The area for determining the blur diameter 
d) Determination of the best-focused location 
Fig. 5  Determination of blur diameters 
 

The Fourier transform of (34) is  
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where )(ωσG  is the Fourier transform of the Gaussian 

function 
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light stripe to simplify the Fourier transform, )()( ll
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If a coordinate system with its original at the center of the 
bright stripe is used, this value can be written as 
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where ε(.) is a unit step function. 
 

The Fourier transform of (37) is 
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Since )( lxI  (the curve on the shaded area in Fig.5c) is 

measured by the camera, its Fourier transform )(ωFI  can be 

calculated. Rewriting (35) and integrating on both sides of it 
gives 
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Since the left side is found to be   
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The blur radius can be computed by 
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Neglecting the effect of blurring caused by multiple 

illumination stripes, we have the following theorem to 
determine the blur radius with a lower computational cost. 
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Theorem 2. When projecting a source illumination with a 

step profile, the blur radius is proportional to the area under 
the blurring curve:  

 

S
I 0

2πσ = ,  (42) 

where I0 is the intensity without considering the blurring and 
S is the area as illustrated in Fig.5c. The proof is given in 
Appendix B. 

C. The best-focused location 

With Theorem 2, by integrating the blur curve on each 
stripe edge, its blur radius can be calculated and a set of data 
are obtained. Since the blur diameters are unsigned, in order 
to obtain a straight line corresponding to the changing depth 
in the scene, we need to find the minimum value in the data 
set and separate the set into two parts. Their linear best-fits 
give two straight lines (Fig. 5d): 
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Finding the intersection of the left line and the right line 
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D. Combination of the two cues 

For the projector, the length of the light path is 
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cc

ccc

xv

yhbhxbv

+
−++

.  (45) 

 
At the best focused location, we have 
 

)cos( 0αα −=
− best

pp

pp l
fv

fv
.  (46) 

or 2

0

][
)cos()fv(

fv

pp

pp

αα −−
= 

2

222

][

][][

)sin(x)cos(v

y)cos(h)sin(bhxbv

cc

ccc

αα
αα

+
−++ ,  (47) 

 
Equation (47) is a constraint equation derived from the 

focus cue. Here h, vp and fp are known constants and b has 
appeared in the geometrical constraint. xc, yc, and α are 

replaced by the xc,best, yc,best. αbest determined in the above 
formulation. Thus together with the four equations in (29), 
there are 5 unknown parameters ),,,,( 021 αCCbk=S  that can 

be found by solving the 5 equations. Using steepest descent 
approach which is an iterative method based on local 
gradients, we can obtain an accurate solution of the non-
linear equation system. The algorithm for the self-
recalibration is summarized as follows: 

(1) Project the illumination patterns on the scene and 
capture the images from the camera. Find a line that is 
illuminated by at least three stripes. 

(2) Compute the stripe locations in the image by a gradient 
operator and record their coordinates (xci, yci, i) with i being 
the stripe index. 

(3) Calculate the geometrical cue V (29) based on the 
matrix equation (27). 

(4) Determine the blur diameter for each stripe. Use linear 
fitting method to find the best-focused location (44). 

(5) Combine the two cues, (29) and (47), to find the 
relative parameters. 

(6) Obtain the matrices H (7) and Q (11) for performing 
3D reconstruction. 

V. SENSITIVITY ANALYSIS 

A. Recalibration Error 
In this section, the sensitivity of the depth error to the 

recalibrated parameters (i.e. ∆α0 and ∆b) is analyzed. The 
relative reconstruction error of the scene depth is 

 

Z

Z

Z

b

b

Z

Z

Z
Ez

0

0

α
α

∆
∂
∂+∆

∂
∂=∆=  

       =
)(sin)]cot([

)(

)cot( 22
0

αα
α

α hbv

Zbvhx

hb

b

c

cc

−
∆+

+
−

∆
.  (48) 

 
Now we consider the computational error of the stripe 

location on the captured image which can cause errors in the 
recalibrated parameters. We have 

 

cc

cc
c xv

vhbv
CxC

+
−=+

)cot(

)cot(
21 α

α
            (49) 

0α∆ = c
c

c

c

x
Zhv

ZCZbvC

vZh

CZ ∆
+

+−+
+

−− )(sin]
)()(

2
[ 2

2
2

2
12 α .     (50) 

 
Taking the derivative of (47) with respect to b and xc gives 
 

byhbxhbvhxbv ccccc ∆−+∆+∆+ )sin()]cos()sin([))(( 2 ααα  

= ccc
pp

pp xxv
fv

fv
∆+

−
)sin()]sin()cos([)( 2 ααα  
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c
cccc

cccc
pp

pp

x
yhbvhxbv

xhbhvxv
fv

fv

b ∆
−++

−−+
−

=∆
)sin()]cos()sin([)(

)sin()]sin()cos([)(

2

22

ααα

ααα

 
In the image processing, the stripe location error in the 

image can be given as 
 

12

δ=∆ cx ,  (51) 

 
where δ is the pixel width of the sensor. For a common CCD 
camera, δ is usually between 5µm and 20µm. 

Consider a camera with a focal length vc = 30mm and a 
sensor’s pixel width δ = 11.6µm. If the projector is 0.5m 
away from the camera, it’s orientation angle is 45o, h = 0 or h 
<< b, and the object is at 1m distance from the camera, the 
relative orientation error is: 

 

12

)(sin
]

)(
1[

2

2
000 δ

α
α

α
α

c

ccb

vZ

vZZvZ

Z

Z −++−=∆
   (52) 

          ≈ 0.00547%. 
 

The relative position error is:  
 

12)()(sec

)(
2222

2

pp

c

cc

pp

fvbZ

v

yv

fv

b

b

−+
=∆ δ

α
              (53) 

      ≈ 0.0112% 
 

The relative depth error is:  
 

)(sin)]cot([

)(

)cot( 22
0

αα
α

α hbv

Zbvhx

hb

b
E

c

cc
z −

∆++
−

∆=         (54) 

       ≈ 0.0284%. 
 
By utilizing a large number of stripes in an image and 

employing a sub-pixel method in the image processing, the 
accuracy can be improved significantly. However, there exists 
noise resulting from the projector emission, surface reflection, 
and sensor perception. Static calibration errors are also 
passed on to the dynamic recalibration. These require a 
separate treatment in the analysis. 

B. Error Propagations 

The error propagation from initial static calibration to 
dynamic recalibration is analyzed in two steps. First, the 
static calibration error itself will cause depth error in the 
reconstruction. Second, the static calibration error can pass 
on to the dynamic recalibration and then to depth 
reconstruction. The static calibration is usually performed by 
placing a printed target in front of the sensor. The error 
resulting from this calibration stage will lead to 3D 

reconstruction errors directly and indirectly. 
1) Errors directly caused by initial static calibration 

The 3-D reconstruction error directly caused by initial 
static calibration error can be estimated by computing the 
partial derivative of (49). For example, assume that the 
camera focal length vc has an amount of uncertainty ∆vc. This 
will give rise to a relative z-depth error 

 

c

c

v
vz v

v

hb

Z

Z

Z
E

c

c

∆
−

−=∆= ]
)tan(

1[, α
.  (55) 

 
To prevent the static calibration error (Evc = ∆vc / vc) from 

being magnified or accumulated in the reconstruction, we 

need 1|
)tan(

1| ≤
−

−
hb

Z

α
, i.e. hbZ 2)tan(20 −≤< α . 

Ignoring the effect of small h and considering a case with 
45o projection angle, we only need to ensure bZ 2≤ . Hence 
to achieve satisfactory 3D reconstruction results, the object 
should be placed not farther than twice of the baseline 
distance. The influences of the uncertainties on the other 
parameters obtained from the initial calibration can be 
analyzed in a similar way and the resulting errors are found 
to be in the same order as the uncertainties. 

2) Error propagation from static to dynamic calibration 
The static calibration error will also cause dynamic 

calibration error, which in turn will cause 3D reconstruction 
error. 

Among the initially calibrated system parameters (vc, vp, 
xc0, and xp0), we observed that the noise in vc and xc0 has no 
influence on the results of α0 and b. Hence, from the matrix 
equation (27), we only need to analyze the error propagation 
due to the noise in vp and xp0. However, the theoretical 
analysis is intractable here. In this research, we 
experimentally proved that the relative errors of both the 
recalibration parameters (∆α0 and ∆b) are linear 
combinations of ∆vp/vp and ∆xp0/xp0. Consider the above case 
with a similar assumption for the system configuration as in 
1), we generated perfect data for the matrix A in (28), and 
fictitiously added the perturbations (∆vp and ∆xp0) to it. The 
dynamic parameters (α0 and b) were then computed. The two 
error surfaces against the perturbations in vp and xp0, were 
numerically found to be in the form 

    
b

b∆
 = 1.1909

p

p

v

v∆
 - 0.1956

0

0

p

p

x

x∆
; 

    
0

0

α
α∆

 = -0.6058
p

p

v

v∆
 - 0.1286

0

0

p

p

x

x∆
. 

 
The above dynamic calibration errors then will cause errors 

in the 3D reconstruction. The relative errors so caused can be 
determined quantitatively by (48). 

In summary, the reconstruction errors can be traced to 
three sources: 1) directly from the static calibration; 2) 
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directly from the dynamic calibration; 3) indirectly from the 
static to dynamic calibration and to the final reconstruction. 
As the initial static calibration error will cause both direct 
and indirect reconstruction errors, special care needs to be 
exercised at this stage. In practice, however, the static 
calibration is normally performed off-line (before installed on 
the robot). Therefore, the parameters can be calibrated with a 
relatively high accuracy (usually between 0.001%-0.1%) 
[1,17,20]. This makes it possible to achieve high 
reconstruction accuracy with the dynamic recalibration 
approach. In our investigation, we found that an overall 
relative 3D reconstruction accuracy of about 0.03% is 
achievable (i.e. about 0.3mm error for an object at 1m from 
the camera). 

VI. EXPERIMENTAL STUDY 

The experimental setup is shown in Fig. 6. It consists of an 
LCD projector from ABW GmbH Ltd Co. and a PULNIX 
TMC-9700 camera with a CCD of 740 × 480 pixels and a 
25mm lens. The projector is fixed whereas the camera can be 
moved vertically and rotated about the y-axis. The light stripe 
index is identified by a gray-encoded stripe projection method. 

 

 
Fig. 6  The system setup 

 
At the static calibration stage, the intrinsic parameters of 

the camera and the projector were obtained. Then at the 
dynamic recalibration stage, the illumination was projected 
onto a white background without predefined features. The 
camera's orientation and horizontal position were adjusted so 
that the camera could detect the illuminated area.  

 

 
                     a)                                       b) 

 
                      c)                                       d) 
a) The stripe illumination projected  
b) An intensity profile on the image 
c) Its derivative profile 
d) The locations of stripe edges 

Fig. 7  Determination of stripe locations 
 
Fig.7a illustrates an image captured when the illumination 

was projected on the background wall. Fig. 7b shows an 
intensity profile and Fig. 7c shows its derivative profile. The 
stripe locations were determined by finding the peaks (Fig. 7d) 
of the derivative curve. Table 1 lists the results computed 
from the image, of the rectified stripe locations by (25), and 
blur radiuses by (42). 

 
 
 
 
 
        Table 1  Stripe locations and blur radiuses 

Index (i+
i0 ) 

Stripe locations 
(subpixel) 
(di[i]) 

Stripe distances 
(subpixel) 
di[i+

1]-di[i] 

C
am

era coord. 
x

c (i) 

x
c ’(i) (rectified) 

B
lur radius 

( r[i] ) 

1 15.6402  -4.1048 -4.1160 394.136 
2 42.9004 27.260 -3.7886 -3.7921 341.153 
3 70.7796 27.879 -3.4652 -3.4705 339.794 
4 97.9553 27.175 -3.1499 -3.1512 314.350 
5 124.980 27.024 -2.8364 -2.8342 266.668 
6 152.085 27.105 -2.5220 -2.5194 241.496 
7 178.884 26.799 -2.2111 -2.2068 196.548 
8 205.751 26.866 -1.8995 -1.8965 207.838 
9 231.917 26.165 -1.5960 -1.5883 153.154 
10 258.089 26.172 -1.2924 -1.2823 148.398 
11 284.109 26.020 -0.9905 -0.9784 115.748 
12 310.702 26.593 -0.6820 -0.6766 156.415 
13 336.678 25.975 -0.3807 -0.3769 171.202 
14 362.160 25.481 -0.0851 -0.0793 227.485 
15 387.994 25.834 0.2145 0.2163 240.614 
16 413.648 25.653 0.5121 0.5099 291.551 
17 438.915 25.267 0.8052 0.8015 363.936 
18 464.515 25.600 1.1022 1.0910 490.529 
19 489.102 24.586 1.3874 1.3787 526.596 
20 513.822 24.719 1.6741 1.6643 570.515 
21 538.055 24.234 1.9552 1.9481 578.125 
22 
... 

562.455 24.399 2.2383 2.2299 614.716 
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Using (27), the solution of the geometrical cue was found 

to be 
 
    k(v1, v2, v3, v4)=(-0.0973, 2.8569, -1.3123, 1.0). 
 
For each stripe, the blur radius was determined by (42). 

The linear regression of these data gave two straight lines 
(Fig. 8) 

 
    R1 (x) = -1.0107 x  + 400.1845 
    R2 (x) =  1.6425 x  - 348.1617 
 
The location of the minimum blur radius was determined 

by finding the intersection of the two lines x0s =  282.0507. 
 

 
Fig. 8  Determination of the best focused location 

 
The best-focused location on the camera coordinate system 

was thus 
 
 xc, best =(xc0–x0s) sx =(369.5-282.05) ×0.0116 =1.0144. 
 
yc, best  = (yc0 - y0s) sy = (240-231) ×0.0136 = 0.1224 

10
258.089-284.109

)089.2580507.282)(1011(
, +−−=bestpi =10.9209 

stripepbestpbestp wiix )( 0,, +=  =(10.921–21)×0.44=-4.4522 

4878.20-
4522.4

2155.91
)cot(

,

=
−

==
bestp

p
best x

v
α  

 
The two parameters for the relative pose were obtained by 

combining (29) and (47) 
 
α0 = -37.3084o, and b = 588.9788mm. 
 
On average, the above dynamic recalibration takes about 

0.6 second in our implementation on a Pentium III-800 PC. 
The method is quite stable, with the steepest descent 
algorithm normally converging after no more than 10 
iterations. Finally the relative matrices in (5), (7), and (10) 
were 
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
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








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


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TRM β . 









−
−−

==
98.3567954.006061.0

57100272.230947.96
MPH p . 

T

p

p

p

x

x

x





















+−
−−

−

=

98.35657100000

7954.0272.2315.2395.369

00415.310

6061.0947.9600089.30

Q . 

 
The 3-D coordinates of a point on the object surface were 

recovered by  
 

+
−= cc xQX 1 , for xp ∈  [-N, N]. 

 
With the above calibration results, an example for 3D 

object reconstruction was conducted. The reconstructed 3D 
surface of the object (a computer mouse) is shown in Fig. 9. 

To test the dynamic performance of the method, we 
conducted another experiment using a precisely machined 
metal workpiece (shown in Fig. 10) as the object to be 
reconstructed. The workpiece was placed in front of the vision 
sensor at a distance of Z=388.5mm from the lens. We then 
arbitrarily changed the camera pose several times. The depth 
and width (D and L in Fig. 10) of the object were then 
measured following the dynamic recalibrations. Some typical 
results are listed in Table 2. At Pose 0, the results contain the 
reconstruction errors caused by the static calibration error 
only. Pose 1 and Pose 2 are two arbitrary sensor 
configurations. Our experiments showed that the 3D 
measurement errors using the dynamic calibration were about 
1.5-3.0 times of those using static calibration only. In our 
multi-view dynamic experiments, no accumulative effect of 
the static calibration errors was observed. This is because the 
dynamic calibration is only relative to the initial pose (Pose 0). 
With our initial calibration technique currently implemented, 
we can achieve a dynamic accuracy of 0.015-0.3% in the 
scene depth measurements.  

Such an achievable accuracy is considered quite 
satisfactory, since we did not make special attempts in 
improving the static calibration accuracy. The success in the 
dynamic recalibration and reconstruction can be attributed to 
the specialized device (the projector) adopted and the 
recalibration method developed in our work. This can be 
compared with the case when using a desktop system as in 
[18]. Although their application is for static only, the 
achievable accuracy is limited compared with our static 
calibration (in Pose 0). This is due to the errors that might be 
introduced in calibrating their table, light source, as well as 
the camera and in localizing the shadow edge of the stick. 
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This is the cost paid for the inexpensive hardware setup. An 
LCD projector is not a too expensive device. The benefit 
gained in employing such a specialized system will well 
justify its use in many applications where a stable accuracy is 
needed in the measurement and in particular when dynamic 
recalibration is desired.    

 
Table 2  Experimental results in dynamic measurements 

Pose Feature True 
value 

v0 (mm) 

Measured 
value 

v (mm) 

Relative 
error 

(∆v/V) 

Relative error 
to scene depth 

(∆v/Z) 

0 D 35 35.1623 0.00464 4.178×10-4 
0 L 55 55.2851 0.00518 7.388×10-4 
1 D 35 35.2588 0.00739 6.662×10-4 
1 L 55 55.4975 0.00905 0.001281 
2 D 35 35.2756 0.00787 7.0940×10-4 
2 L 55 55.4231 0.00769 0.001089 
 
 

 
 
 
  

VII. CONCLUSION 

This paper presents our work in developing an active 
vision system which can be self-calibrated automatically. A 
recalibration method is developed that can be used in a 
dynamic application. The recalibration method does not 
require a special calibration target with pre-defined patterns 
or known motions of the sensor or the object. Whilst most 
previous self-calibration methods require multiple views at 
different positions, our method only needs to take a single 
view. 

The intrinsic cues of the system have been explored for the 
self-recalibration. By taking advantage of the active sensing 
system, the geometrical cue and the focus cue have been 
successfully used in the calibration of the structured light  
vision system with 2DOF relative motion between the sensor 
and the illumination. The sensitivity analysis shows that with 
this method, a high accuracy in the depth measurement is 
achievable. This can be further improved if a good sub-pixel 
method and multi-stripe optimization techniques are 
employed.  

Experiments were performed to apply the developed 
calibration method to a real vision system. The results show 
that using the dynamic recalibration, stable and accurate 3D 

reconstruction can be achieved. The illumination cue was not 
presented in this paper in treating the 2DOF system in use. 
Current work is going on in extending the method to the self-
recalibration of a vision system with more motion degrees of 
freedom of motion and testing the dynamic performance 
using a robot work cell. Applications of the method will 
include advanced robotic applications where automated 
operations entail dynamically re-configurable sensing and 
automatic recalibration to be performed on-line without 
operator’s interference. 

APPENDIX A 

Proof of Theorem 1. Rank ( A ) = 3. 
Considering the 3×3 matrix Alt in the left-top corner of the 

n×4 matrix A. If det(Alt) ≠ 0 , then rank(A) ≥ 3 is true. 
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With row operations, it can be transformed to 
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From (19) and (20), we have 
 

2
4

4132
2

V

)VVVV(
U

−
= =

2
0112

212
2
01

)AhCbCC(

)hCbC(C)A(vv pc
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Suppose that the observed line does not pass through the 

optical center of either the camera or the projector, i.e.  
 
C2 ≠ 0, and 0),0(21 ≠−=++ bZhhCbC .                  (A4) 

 
Hence    U2 ≠ 0.  (A5) 
 
For any pair of different light stripes illuminated by the 

projector, i.e. Ai ≠ Aj , from (19), 
 

ip
i AvU

U
UX

+
+=

3

2
1

,  (A6) 

 
we have Xi ≠ Xj , and 

 
0)1,1(' ≠= pclt vvA ,  (A7) 

0)()2,2(' 12 ≠−= AAvcltA ,  (A8) 

L 

D 

Fig. 9  The 3D object 
reconstructed 

Fig. 10  The workpiece 
for dynamic test 
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Hence, 3)'()()( ==≥ ltlt rankrankrank AAA . 

On the other hand, rewrite matrix A using four column 
vectors, i.e. 

 
][ 1111 mmmm cccc=A ,  (A10) 

 
where 

T
cpcpcpm vvvvvvc ]...[ 1 = , (A11) 

T
ncccm AvAvAvc ]...[ 212 = ,  (A12) 

T
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T
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With the fourth column, 
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3
1
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       = 332211 mmm ccc τττ ++ .  (A15) 

 
This means that the matrix’s 4th column, cm4, has a linear 

relationship with the first three columns, cm1 - cm3 . So the 
maximum rank of matrix A is 3, i.e. 3)( ≤Arank .  

Therefore we can conclude that 
 

3)( =Arank .   (A16) 

APPENDIX B 

Proof of Theorem 2. The blur radius is proportional to the 

area under the blurring curve: S
I 0

2πσ = . 

Consider the illumination whose intensity profile is a step 

function 
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The size of the blurred area is the integration of the 

intensity profile function from 0 to +∞: 
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That gives    S
I 0

2πσ = .             

(A21) 
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